Chapter 7- Logical Agents

fowre

« Knowledge-based agents

* Wumpus world

* Logic in general - models and entailment
* Propositional (Boolean) logic

« Equivalence, validity, satisfiability

* Inference rules and theorem proving
— forward chaining
— backward chaining
— resolution

- Wumpus World PEAS description

*Performance measure
— gold +1000, death -1000
— -1 per step, -10 for using the arrow

. | Sases B

Environment

[

[.-'Eree.:a.':'
s 2
— Squares adjacent to wumpus are sme el Ni=ring

S = Beem —
— o Slench "> - -

— Squares adjacent to pit are breezy
;ﬁ’ o CEm
= 1 ~— Al —

— Glitter iff gold is in the same square =

1 2 3 4

— Shooting kills wumpus if you are facing it

— Shooting uses up the only arrow

— Grabbing picks up gold if in same square

- Logic in general

» Logics are formal languages for representing
Information such that conclusions can be drawn

« Syntax defines the sentences in the language

« Semantics define the "meaning"” of sentences;

— |.e., define truth of a sentence in a world

« E.g., the language of arithmetic

— X+2 2y is a sentence; x2+y > {} is not a sentence

— X+2 2y is true iff the number x+2 is no less than the numbery

- Propositional logic: Syntax

* Propositional logic is the simplest logic — illustrates
basic ideas

* The proposition symbols P,, P, etc are sentences

— If Sis a sentence, —S is a sentence (negation)
— If S; and S, are sentences, S; A S, is a sentence (conjunction)
— If S; and S, are sentences, S; v S, is a sentence (disjunction)

— If S; and S, are sentences, S; = S, Is a sentence (implication)

— If S; and S, are sentences, S; < S, IS a sentence
(biconditional)

Truth tables for connectives

false
false
true
true

false

true
false
true

false
false
false
lrue

false
true
true
true

true
true

false
true

true
false

false
true

- Wumpus world sentences

Let P;; be true if there is a pitin [i,]].
Let B;; be true If there Is a breeze in [i, J].

-1 Pl,l
_IBl,l

BZ,l

« "Pits cause breezes in adjacent squares"

B, & (P1,2 Vv P2,1)
B, & (P1,1 v Pyov P3,1)

- Proof methods

* Proof methods divide into (roughly) two kinds:

— Application of inference rules

Legitimate (sound) generation of new sentences from old

Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search
algorithm

Typically require transformation of sentences into a normal form

— Model checking
* truth table enumeration (always exponential in 77)

* improved backtracking, e.g., Davis-Putnam-Logemann-Loveland
(DPLL)

- Resolution

Conjunctive Normal Form (CNF)
KB = conjunction of disjunctions of literals clauses

E.g.,.(Av—-B)A (B v-Cv-D)

« Resolution inference rule (for CNF):

Lv... vk, m N ...V my,

LN oV E gV E VNV N N N g Y g Ve Vo,

where fand m are complementary literals.

- Conversion to CNF

B, © (P1,2 Vv P2,1)

1. Eliminate <, replacing a < 8 with (a = B)A(B = a).
2.
(By1=> (P12Vv Py1)) APV Pyy) = Byy)

2. Eliminate =, replacing a = 3 with —av [3.

(—'81,1 Vv I:)1,2 Vv P2,1) A (_'(Pl,Z Vv I32,1) Vv B1,1)

3. Move — inwards using de Morgan's rules:

(_'Bl,l 4 I:)1,2 4 P2,1) A ((—'Pl,z A _'P2,1) Vv B1,1)

- Resolution algorithm

* Proof by contradiction, i.e., show KBAr—a unsatisfiable

function PL-RESOLUTION(KB, a) returns true or false

clauses « the set of clauses in the CNF representation of KB A —«
new + { }
loop do
for each C;, C; in clauses do
resolvents «+— PL-RESOLVE(C}, Cj)
if resolvents contains the empty clause then return true
new < new U resolvents
if new C clauses then return false
clauses + clauses U new

- Resolution example

* KB=(By; < (P1ov Pyy) A—Byja=

‘ _'Pz,fVir B1,1 ! B1,1\~r‘ir Pl,z\f'f Pz,l 0,V B1,1 _'Bl,l Pl,z
| [| I ——
~Bu.v Pu\f B., PmV Pz,1\=” —P, | B.v Pz’lv Bl’l Pl,z\-f Pz,ﬁ*” _‘Pz,1 S ‘ _'Pl,z ‘

N

Forward and backward chaining

* Horn Form (restricted)

KB = conjunction of Horn clauses

— Horn clause = symbol; or (conjunction of symbols) = symbol
— Eg,.CAB=A)A(CAD=B)

<
o
Q
(=
o
O
O
j

Can be used with forward chaining or backward chaining.

These algorithms are very natural and run in linear time

- Forward chaining

» |dea: fire any rule whose premises are satisfied in the
KB,
— add its conclusion to the KB, until query is found

T
P = @
LM = P P
BANL = M
ANP = L M
ANB = L
A
B /

Forward chaining algorithm

function PL-FC-ENTAILS? (KB, ¢) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p+— Pop(agenda)
unless inferred[p] do
inferred[p] + true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count[c] = 0 then do
if HEAD[¢| = ¢ then return true
Puse(HEAD[¢], agenda)
return false

« Forward chaining is sound and complete for
Horn KB

- Forward chaining example

- Forward chaining example

- Forward chaining example

- Forward chaining example

- Forward chaining example

- Forward chaining example

- Forward chaining example

- Forward chaining example

- Backward chaining

ldea: work backwards from the query g

to prove g by BC,
check if gis known already, or
prove by BC all premises of some rule concluding g

Avoid loops: check if new subgoal is already on the goal
stack

Avoid repeated work: check if new subgoal

1. has already been proved true, or
2.

- Backward chaining example

- Backward chaining example

- Backward chaining example

- Backward chaining example

- Backward chaining example

- Backward chaining example

- Backward chaining example

- Backward chaining example

- Backward chaining example

- Backward chaining example

Forward vs. backward chaining

 FC is data-driven, automatic, unconscious processing,
— e.g., object recognition, routine decisions

« May do lots of work that is irrelevant to the goal

 BC is goal-driven, appropriate for problem-solving,
— e.g., Where are my keys? How do | get into a PhD program?

« Complexity of BC can be much less than linear in size
of KB

- Efficient propositional inference

Two families of efficient algorithms for propositional
Inference:

Complete backtracking search algorithms

 DPLL algorithm (Davis, Putnam, Logemann,Loveland)

* Incomplete local search algorithms
— WalkSAT algorithm

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is
satisfiable.

Improvements over truth table enumeration:

1. Early termination
A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.

e.g., In the three clauses (A v —B), (-B v —=C), (C v A), Aand B are pure, C
IS impure.
Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses +— the set of clauses in the CNF representation of s
symbols + a list of the proposition symbols in s
return DPLL(clauses, symbols, ||)

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value + FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols-P, [P = value|model|)
P, value+ FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols-P, [P = value|model|)
P+ F1RST(symbols); rest <« REST(symbols)
return DPLL(clauses, rest, [P = true|model|) or
DPLL(clauses, rest, [P = false|model|)

- The WalkSAT algorithm

* Incomplete, local search algorithm

Evaluation function: The min-conflict heuristic of
minimizing the number of unsatisfied clauses

Balance between greediness and randomness

The WalkSAT algorithm

function WALKSAT(clauses, p, maz-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move
maz-flips, number of flips allowed before giving up

model+— a random assignment of frue/false to the symbols in clauses
for i = 1 to maz-flips do

if model satisfies clauses then return model

clause +— a randomly selected clause from clauses that is false in model

with probability p flip the value in model of a randomly selected symbol

from clause

else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

- Hard satisfiability problems

» Consider random 3-CNF sentences. e.g.,

(-Dv-BvC)A(Bv-Av-LC)A(—-Cv -BVE)A(E
v-DvB)A(BvVEV--C)

/m = number of clauses
11 = number of symbols

— Hard problems seem to cluster near m/n =
A 2 (critical noint)

Hard satisfiability problems

i
(o
T
1

Prisatisfiable)
o
T
]

=
[
!
I

0 1 2 3 4 3 6 7 3
Clause/symbol ratio m/n

- Hard Satisfiability problems

2000 T T |
1800 DPLL + |
1600 - WalkSAT ey IIJIT
1400

1200 - ,i||
1000 f*l
800 | f
400 F [ox s

ﬂnl
200 A/ Jﬁﬂﬁ:" L7
D *:k—u_-?e—?!:" el 1 1]

0 1 2 3 4 5 6 T 8
Clause/symbol ratio m/n

« Median runtime for 100 satisfiable random 3-
CNF sentences, n=50

Runtime

- Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

=P

Wy,

Bx,y < (Px,y+1 Vv I:)x,y-l Vv I:)x+1,y Vv I:)x-l,y)
Sy & (WX,erl VW, VWV Wx_l,y)
WiivWioviiovWy,

Wy v =Wy,

Wy v W3

= 64 distinct proposition symbols, 155 sentences

function PL-WumMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze, glitter]
static: KB, initially containing the “physics” of the wumpus world
z, y, orientation, the agent's position (init. [1,1]) and orient. (init. right)
visited, an array indicating which squares have been visited, initially false
action, the agent's most recent action, initially null
plan, an action sequence, initially empty

update z,y, orientation, visited based on action

if stench then TELL(KB, S.,) else TELL(KB, — S,)

if breeze then TELL(KB, B,) else TELL(KB, ~ B,)

if glitter then action + grab

else if plan is nonempty then action < Pop(plan)

else if for some fringe square [i,j], ASK(KB, (= Pij A — Wi;)) is true or

for some fringe square [i,j], ASK(KB, (P;; v W;;)) is false then do

plan «+ A*-GRAPH-SEARCH(ROUTE-PB([z,y], orientation, [1,j], visited))
action + Pop(plan)

else action + a randomly chosen move

return action

Expressiveness limitation of propositional

loqic

« KB contains "physics" sentences for every single
square

For every time tand every location [X,ﬁ,

L,y ~ FacingRight A Forward = L., ,

Rapid proliferation of clauses

Summary

Logical agents apply inference to a knowledge base to derive new
information and make decisions

Basic concepts of logic:

— syntax: formal structure of sentences

— semantics: truth of sentences wrt models

— entallment: necessary truth of one sentence given another
— Inference: deriving sentences from other sentences

— soundness: derivations produce only entailed sentences

— completeness: derivations can produce all entailed sentences

« Wumpus world requires the ability to represent partial and negated
information, reason by cases, etc.

